FAY

Science and Technology

Home
The Myth of Willie Lynch... The Charybdis
Religion
About Me
My Tweeter Connections
My Journey To Finish My Ph.D
Educational
Quotes
Krafft's Videos
Links
Science and Technology
A Dream Realized

gm2.gif



pictures_008.jpg

scannasa.jpg

Follow this link to skip to the main content
header NASA logo
+ NASA Homepage
+ NASA en Español
+ Marte en Español
Overview Science Technology The Mission People Features Events Multimedia
Mars for Kids
Mars for Students
Mars for Educators
Mars for Press
+ Mars Home
+ Rovers Home
image link to overview page
Summary
Summary

The rover standing on Martian terrainNASA's twin robot geologists, the Mars Exploration Rovers, launched toward Mars on June 10 and July 7, 2003, in search of answers about the history of water on Mars. They landed on Mars January 3 and January 24 PST, 2004 (January 4 and January 25 UTC, 2004).

The Mars Exploration Rover mission is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet.

Primary among the mission's scientific goals is to search for and characterize a wide range of rocks and soils that hold clues to past water activity on Mars. The spacecraft are targeted to sites on opposite sides of Mars that appear to have been affected by liquid water in the past. The landing sites are at Gusev Crater, a possible former lake in a giant impact crater, and Meridiani Planum, where mineral deposits (hematite) suggest Mars had a wet past.

After the airbag-protected landing craft settled onto the surface and opened, the rovers rolled out to take panoramic images. These images give scientists the information they need to select promising geological targets that tell part of the story of water in Mars' past. Then, the rovers drive to those locations to perform on-site scientific investigations.

These are the primary science instruments carried by the rovers:

  • Panoramic Camera (Pancam): for determining the mineralogy, texture, and structure of the local terrain.

  • Miniature Thermal Emission Spectrometer (Mini-TES): for identifying promising rocks and soils for closer examination and for determining the processes that formed Martian rocks. The instrument is designed to look skyward to provide temperature profiles of the Martian atmosphere.

  • Mössbauer Spectrometer (MB): for close-up investigations of the mineralogy of iron-bearing rocks and soils.

  • Alpha Particle X-Ray Spectrometer (APXS): for close-up analysis of the abundances of elements that make up rocks and soils.

  • Magnets: for collecting magnetic dust particles. The Mössbauer Spectrometer and the Alpha Particle X-ray Spectrometer are designed to analyze the particles collected and help determine the ratio of magnetic particles to non-magnetic particles. They can also analyze the composition of magnetic minerals in airborne dust and rocks that have been ground by the Rock Abrasion Tool.

  • Microscopic Imager (MI): for obtaining close-up, high-resolution images of rocks and soils.

  • Rock Abrasion Tool (RAT): for removing dusty and weathered rock surfaces and exposing fresh material for examination by instruments onboard.

Before landing, the goal for each rover was to drive up to 40 meters (about 44 yards) in a single day, for a total of up to one 1 kilometer (about three-quarters of a mile). Both goals have been far exceeded! Where are the rovers now?

Moving from place to place, the rovers perform on-site geological investigations. Each rover is sort of the mechanical equivalent of a geologist walking the surface of Mars. The mast-mounted cameras are mounted 1.5 meters(5 feet) high and provide 360-degree, stereoscopic, humanlike views of the terrain. The robotic arm is capable of movement in much the same way as a human arm with an elbow and wrist, and can place instruments directly up against rock and soil targets of interest. In the mechanical "fist" of the arm is a microscopic camera that serves the same purpose as a geologist's handheld magnifying lens. The Rock Abrasion Tool serves the purpose of a geologist's rock hammer to expose the insides of rocks.

Credits Feedback Related Links Sitemap
first gov logo
footer NASA logo

fallstars.gif




 

Certificate of Participation

 

left background image
Margery F. Krafft
You are part of history!
Your name will be carried to Mars on a microchip
carried by NASA's Mars
Science Laboratory rover.

Certificate number: N2M400848410
Date: September 27, 2010
left background image with the rover in it
bottom background image

spacer.gif

CURRENT MOON

1cyan.gif - 0.57 K1dkblu.gif - 0.57 K1gold.gif - 0.57 K1ltblu.gif - 0.57 K

1pink.gif - 0.57 K 1orng.gif - 0.56 K1purp.gif - 0.57 K1red.gif - 0.57 K1yelo.gif - 0.57 K


rocket-launch.gif

rocket-man.gif

HTML code: To Fact Monster

globe.gif

fallstars.gif

vss00020.jpg

NASA Kennedy Space Center

http://www.nasa.gov